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ABSTRACT

We present a technique for compressive phase retrieval un-
der Poisson noise using the theory of variance stabilization
transforms (VSTs). We modify two existing algorithms us-
ing VSTs, and derive worst-case performance bounds for
both the algorithms. Our proposed modification allows for
easy and very principled parameter tuning. Our estimator is
tractable and we also show numerical results on phase recov-
ery of sparse signals for Poisson corrupted measurements,
and demonstrate the relative advantage of our modification at
low intensities. We also present a comparison of the perfor-
mance and other theoretical aspects of both the algorithms.

Index Terms— Variance Stabilization transforms, Com-
pressive Phase Retrieval, Performance Bounds

1. INTRODUCTION

The problem of phase retrieval aims to estimate an underlying
signal from its phaseless (squared) magnitude measurements.
It finds applications in various problems like microscopy, pty-
chography and astrophysical imaging [1]. While acquiring
measurements in a physical system, the inability of the sen-
sors to record phase is also accompanied by photon shot noise
(Poisson noise), which is a signal dependent noise particularly
dominant in low intensity (i.e. low SNR) regimes like astro-
physical imaging. Hence, the algorithms for phase retrieval
should also take into account the Poisson corrupted nature of
the acquired measurements, but not much work has been done
in this direction, from a theoretical or algorithmic perspective.

There has been sizeable recent work on both convex and
non-convex methods for phase retrieval. Some of the popular
non-convex methods for phase retrieval are [2], [3], [4], [5]
and [6]. We focus on convex methods, in particular lifting-
based approaches in this work. The PhaseLift method [7],
which seeks to estimate a rank-one matrix X , xxH instead
of the signal x, is one of the seminal contributions in this
area. The lifting-based approaches have performance guaran-
tees but are computationally expensive for high dimensions.
[8] provides a convex method based on basis pursuit for phase
retrieval that doesn’t require the lifting approach. Some recent
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work also includes projected gradient based iterative algo-
rithms or ADMM for phase retrieval to improve the scalability
of the convex algorithms [9], [10]. Phase retrieval is a non-
linear ill posed problem, and hence requires oversampling or
a large number of measurements for efficient recovery [1].
Incorporating prior knowledge about the signal is one way to
improve performance, especially in the case of fewer phase-
less measurements. This variant of the phase retrieval prob-
lem is known as compressive phase retrieval. [10] uses an `1
sparsity-promoting regularization on X in addition to trace
minimization in the phase lift algorithm. [11] proves that
for Fourier measurements of a k-sparse signal,O(k2 log( nk

)
)

measurements are sufficient for accurate recovery. In contrast
to jointly solving for the low rank and sparse matrix as done
in [10], recent works like [12], [13], [14] use a 2-stage itera-
tive method for compressive phase recovery which separately
handles the low rank and sparse estimation for compressive
phase retrieval and guarantees accurate phase recovery from
O(k log( nk

)
) measurements. To our best knowledge, there

has been no work so far on compressive phase retrieval under
Poisson noise. In [15], expected error bounds for holographic
phase retrieval with Poisson noise are derived, but in the non-
compressive regime.

Main Contributions: We present the following contribu-
tions in this paper:

1. We present a statistically motivated and tractable VST
based approach to compressive phase retrieval under
Poisson noise.

2. We demonstrate the improvement in performance ob-
tained for two standard algorithms using our approach.
We also prove performance bounds for modifications
to both these algorithms. The bounds depend on the
intensity of the signal observed, but implementing the
algorithm does not require any such knowledge.

2. PRELIMINARIES

2.1. Compressive Phase retrieval via Lifting (CPRL)

The standard phase retrieval problem can be formulated as

find x subj. to y = |Ax|2 + e



where |Ax|2 = {aHi xxHai}1≤i≤N ( ai is the ith row ofA),
yT = [y1, · · · ,yn] ∈ Rn×1, x ∈ Cd×1, and e is the i.i.d
additive Gaussian noise vector. It is well known that this is a
general QCQP type of optimization problem, which is com-
binatorial and NP hard (even for real signals). The PhaseLift
method [16] represents this problem as the task of finding a
rank 1 positive semi-definite matrix X = xxH from linear
measurements y instead of estimating a d dimensional vec-
tor from quadratic measurements |Ax|2, where A , RF ,
where R ∈ Cn×d is a random projection matrix with every
entry an i.i.d complex or real Gaussian, and F can be a DFT
matrix or an i.i.d random Gaussian matrix. Since finding a
rank 1 matrix is a non-convex problem, trace minimization is
used as a convex surrogate to rank minimization which makes
this problem an SDP, and hence can be solved using convex
optimization techniques. Therefore using the lifting idea, the
phase retrieval problem can be posed as follows:

min
X

Tr(X) (1)

subj. to ‖B(X)− y‖2 ≤ ε,X � 0 (2)

where B is a linear operator on X defined as

B : X ∈ Cd×d 7→ {Tr(aHi Xai)}1≤i≤N ∈ RN , (3)

and ε is an upper bound on ‖e‖2. The solution to this opti-
mization problem guarantees unique and accurate reconstruc-
tions up to global phase ambiguities like time shift, conjugate
flip and constant phase [1]. If the signal x is given to be
sparse, then the above formulation can be modified to incor-
porate the sparsity of the signal also using `1 regularization
form of the trace norm, which gives the objective function
for compressive phase retrieval via lifting (CPRL) given by
Ohlsson et. al [10]:

P1 : min
X

Tr(X) + λ‖X‖1 (4)

subj. to ‖B(X)− y‖2 ≤ ε,X � 0. (5)

The estimate of x can be then found using an SVD-based
rank-1 decomposition of X up to global ambiguities [10].

2.2. Compressive Phase Retrieval - 2 stage algorithm

Compressive phase retrieval can be interpreted as a problem
of recovering a low rank and sparse matrix X . [13] pro-
vides a 2-stage algorithm for this task. The first stage in-
volves estimating Â from the underlying low rank matrix A,
followed by the second stage which uses Â to obtain a low
rank and sparse estimate X̂ . For measurements of the form
yi = |〈ai, x〉|2 + ei, the sensing vectors ai are assumed to
be of the form ai = ΨTwi, where Ψ ∈ Rm×d with every
element drawn i.i.d from N (0, 1/m), wi ∈ Rm is known,
and ei denotes elements of the additive i.i.d noise vector.
Hence, the sensing vectors are assumed to lie in a fixed low-
dimensional subspace. Such measurement systems occur in

imaging systems where the illumination is controlled. The
lifting scheme allows the quadratic measurements to be ex-
pressed as -:

yi=
〈
aia

T
i ,X

〉
+ ei =

〈
ΨTwiwi

TΨ,X
〉

+ ei, (6)

where X = xxH , and the linear operatorsW & F defined as

W : A 7→
[〈
wiw

T
i , A

〉]n
i=1

and G : X 7→W
(
ΨXΨT

)
.

The measurements can hence be expressed concisely as

y = G (X) + e.

In this work we assume wi ∼ N (0, I), Ψ to be RIP-obeying
for 2k-sparse vectors and that ‖e‖2 ≤ ε as assumed in [13].
The algorithm solves the two convex problems of low rank es-
timation and sparse estimation sequentially. We implemented

Algorithm 1: 2 Stage Method P2
1 Low-rank estimation stage:

Â ∈ argmin
A<0

Tr (A)

subject to ‖W (A)− y‖2 ≤ ε
(7)

2 Sparse estimation stage:

X̂ ∈ argmin
X

‖X‖1

subject to
∥∥∥ΨXΨT − Â

∥∥∥
F
≤ Cε√

n

(8)

the low-rank estimation part using CVX, and the sparse esti-
mation stage using iterative hard thresholding for 1000 itera-
tions [17]. The estimated X̂ may not necessarily be a positive
semi-definite (PSD) matrix, and hence is then projected on a
set of positive semi-definite rank 1 matrices to satisfy the con-
straint on X [13].

3. COMPRESSIVE PHASE RETRIEVAL FOR
POISSON CORRUPTED SIGNALS

The square root is a variance stabilizer for Poisson distri-
bution, i.e. if a measurement yi ∼ Poisson(xi) for the ith

measurement, then
√
yi + c is approximately Gaussian dis-

tributed with mean
√
xi + c and variance 1/4 where c is a

non-zero constant [18]. When c = 3/8, this is called the
Anscombe transform. This approximation becomes more
accurate as xi → ∞. Based on our prior work on Pois-
son denoising using VST [19], we define the residual vector
r(y,X) ,

√
y + c −

√
B(X) + c and B(·) corresponds to

the linear operator mentioned in section 2.1. Motivated by
our work in [19],[20], we define an analogous constraint to
be incorporated in the SDP for compressive phase retrieval,
i.e. ‖r(y,X)‖2 ≤ ε. ε ∼ O(

√
n), where n is the number



of measurements. This particular choice of ε is motivated by
the Theorem 1, proved in our unpublished work [20]. When
the measurements y are Poisson corrupted, using the con-
straints in P1 and P2 is not statistically correct. We extend
this VST based modification for compressive phase retrieval
from Poisson corrupted measurements. The modifications to
P1 and the low rank estimation stage of P2 are as follows:

Q1 : min
X

Tr(X) + λ‖X‖1

subj. to

∥∥∥∥∥
√
y +

3

8
−
√
B(X) +

3

8

∥∥∥∥∥
2

≤ ε,X � 0
(9)

Q2 : Â ∈ argmin
A<0

Tr (A)

subj. to

∥∥∥∥∥
√
y +

3

8
−
√
W (A) +

3

8

∥∥∥∥∥
2

≤ ε
(10)

The sparse estimation stage in Q2 is the same as that in P2.

3.1. Performance bounds for Q1 and Q2

Theorem 1: Bounds for Q1
Abiding by the notations in [21], let B(·) be an (δ, k) RIP
obeying linear operator [21], i.e. ∀X 6= 0 and ‖X‖0 ≤ k∣∣∣∣‖B(X)‖22

‖X‖22
− 1

∣∣∣∣ < δ. (11)

Let X∗ be the true rank 1 matrix that satisfies the constraints
in Q1, and X̃ be the solution to Q1 for an appropriate choice
of parameters. We define ∆ = X̃ −X?. For a matrix X ∈
Rd×d, XT denotes a matrix with all values zero except the
indices in T , which are set to the corresponding values of X .
∀λ ≥ 2d

1−ρ + d

k
1
2

and δ ≤
√

2− 1 we get

‖∆‖2 ≤
2αε(1− ρ)−1 + 2(1 + ρ)(1− ρ)−1k−

1
2 ‖X̃ −X?

k‖1
1− ( 2d

1−ρ + d

k
1
2

) 1
λ

(12)
where ρ ,

√
2δ

1−δ ≤ 1, X?
k is the matrix with the k largest

elements in X? at the corresponding indices and the oth-

ers elements to be 0, ε ∼ O(
√
n) and α ,

4
√

(I+c)(1+δ)

1−δ .
Here I is the true intensity of the underlying measurement,
i.e. ‖B(X?)‖1, which is assumed to be known for naturally
acquired measurements.
Theorem 2: Bounds for Q2
Given that the assumptions in section 2.2 hold, and Ψ has suf-
ficiently small RIP constant δ, then, there exist positive abso-
lute constants C1, C2, and C3 such that ifm ≥ c1k log d

k , and
n ≥ C1m then any estimate X̂ of the algorithm obeys∥∥∥X̂ −X?

∥∥∥
F
≤ C2,

for all rank-one and k×k-sparse matrices X? < 0 with prob-
ability exceeding 1−e−C3n. The constant C2 depends on

√
I

and since ε ∼ O(
√
n), we don’t get a dependence on 1√

n
like

in [13]. The proof outline for these performance bounds is
adapted from [20], [7], [16] and [13]. The complete proof is
presented in the supplemental material.

4. EXPERIMENTS WITH 1-D SPARSE SIGNALS

4.1. 2 stage recovery method (Q2)

We evaluated the performance of Q2 against P2 for Poisson
corrupted measurements y at various Intensity and sparsity
levels of the underlying signal x. x was taken to be a 64-
dimensional k sparse vector, and its intensity is defined as
‖x‖1. The support of x was chosen uniformly at random,
and the values at those indices were randomly drawn from
N (0, 1). The dimensions of Ψ, i.e. m and n were taken to be
8k and 24k respectively in accordance with the experiments
in [13]. For every intensity and sparsity level, 20 instances of
a signal were generated independently. We fine tuned the ε
using cross validation for every signal to get the optimal er-
ror for both P2 and Q2. For cross validation, ε was tuned on
80% of the elements of a vector and cross validated over the
remaining 20% of the vector’s indices. The error was calcu-
lated as ‖Xtrue−Xrecon‖F

‖Xtrue‖F
, where X = xxH . Over the 20

runs for a given intensity and sparsity level, we calculated the
median errors and plotted them across varying intensity levels
for a fixed sparsity level as shown in Fig.1 and across increas-
ing number of measurements at a fixed intensity and sparsity
level in Fig.2.

4.2. CPRL - Ohlsson’s method (Q1)

To evaluate the performance of Q1 against P1 we performed
an experiment similar to that for Q2, with all the signal di-
mensions same as that in the simulation for Q2. Every row
of the measurement matrix A was generated as ai = ΨTwi,
where Ψ and wi are defined as mentioned in the preliminar-
ies. The dimensions of Ψ and the number of measurements
were taken to be the same as that in the simulation for Q2.
For every intensity and sparsity level, 20 instances of a signal
were generated independently. We coarsely tuned λ over an
array of random signals and used λ = 100 to be a constant
throughout the experiment for both Q1 and P1 [10]. We fine
tuned the ε using cross validation for every signal as done for
Q1 to get the optimal error for both P2 and Q2. The median
errors across varying intensity for a fixed sparsity level are
shown in Fig.3. We also plotted the comparison of Q1 and
Q2 across different intensities in Fig. 4.

Observation and Comments We observe that at low in-
tensities, the algorithms with our VST based modification i.e.
Q1 and Q2 perform better than P1 and P2, and their perfor-
mances converge as the intensity increases. We also observe



Fig. 1. Median RMSE plots for Q2 and P2 for a 6 sparse
signal across increasing intensity levels

Fig. 2. Median RMSE plots for Q2 and P2 for 6 sparse sig-
nals across increasing number of measurements

that Q1 performs slightly better than Q2 but Q1 is almost 7
times slower than Q2 for 64 dimensional 6 sparse signals, and
that the speed worsens off with increasing signal dimension
and sparsity levels. [22] also presents a similar comparison
between a 2 stage recovery algorithm and P1 for signals with
additive noise. Since we use the random Gaussian vectors for
both Q1 and Q2, as opposed to the sensing matrices for phase
retrieval in [22] we don’t suffer the loss in performance of
Q1. Moreover for 64 dimensional 6 sparse signals, the perfor-
mance of the 2 stage recovery algorithm and the SDP-l1 norm
method’s performance is expected to be similar, as shown in
the simulations in [22].

5. DISCUSSION AND FUTURE WORK

We demonstrated a tractable method to achieve compressive
phase retrieval from Poisson corrupted measurements at low
intensities, and also proved performance bounds for both the
algorithms with our proposed algorithm. There are many di-
rections to extending this work. Since we have a square root
constraint in our algorithm, obtaining a closed form solution

Fig. 3. Median RMSE plots for Q1 and P1 for a 6 sparse
signal across increasing intensity levels

Fig. 4. Median RMSE plots for Q1 and Q2 for 6 sparse sig-
nals with increasing intensity

for an ADMM type of implementation for Q1 is not possi-
ble, hence speed and scalability of this algorithm is limited.
Q2 alleviates this problem to some extent, as the sparse es-
timation stage can be done iteratively. But Q2 works well
with O(k log( dk

)
) measurements only when Ψ is Gaussian,

and under the assumptions that the sensing vectors all lie in
the same subspace. The bounds presented in Q2 do not in-
volve the Tr ∆ term and hence are more practical than the
bounds for Q1, which need an additional relaxation to get rid
of the trace term. The methods presented in this paper and
otherwise work well in general with Gaussian measurement
matrices, but phase retrieval from pure Fourier measurements
without binary masks or coded diffraction patterns is still a
hard problem. Inferring or designing dictionaries specifically
for compressive phase retrieval is also an interesting research
direction. Sensor saturation is yet another widely encountered
phenomenon in sensor acquisitions, and phase retrieval from
measurements that are both Poisson corrupted and saturated
would be an interesting problem from a both theoretical and
practical standpoint.
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